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We formulate an efficient numerical algorithm based on finite-difference approxi-
mations and inspired by algorithms from gas dynamics to treat the quasilinear wave
equation

Wy = [a (wf + wi) wx]x + [a(wi + ws)wy] v

governing antiplane motions of incompressible, isotropic nonlinearly elastic bodies
in two-dimensions. In particular, we are concerned with the treatment of focusing
and shocks for bodies whose material response differs markedly from that of linear
elasticity. We carefully validate our method by comparing our results with those of
the axisymmetric version of this equation in polar coordinates.2oo1 Academic Press

Key Words:nonlinear elasticity; antiplane motions; finite-difference methods;
polar singularities.

1. INTRODUCTION

In this paper, we present effective numerical methods to treat focusing and shocks
guasilinear wave equations governing antiplane motions of nonlinearly elastic bodies in t
dimensional domains. Our problem, posed as a hyperbolic system of conservation law
treated by a second-order Godunov-type scheme that uses a conservative finite-differ
update and the approximate Riemann solver of Davis [12].

In his important papers [32, 33], Trangenstein extended to problems of solid mechal
with several space dimensions the adaptive higher order Godunov schemes develope
problems with one space dimension in [34]. In particular, these methods were applies
antiplane problems in [16], which may be consulted for additional works on such proble
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by Garaizar and collaborators. We treat several importantissues not treated by these aut
As part of the validation of our numerical solutions, we study axisymmetric problems. The
of course have a polar singularity at the origin, which our methods readily handle. F
dynamical problems, ingoing waves can focus at the origin [29] and could produce ba
behaved solutions. (We show that this possibility does not occur for the problems we tre
In solid mechanics, there are yet other phenomena in which the polar singularity inter
with material response. For example, [6] showed that certain nonlinearly elastic disks
balls could suffer (steady state) cavitation at the origin, in which a hole opens at the cel
when the outer boundary is subject to a sufficient amount of tension. The dynamical vers
of this phenomenon, involving focusing, exhibits a richer and not completely understo
array of effects [27, 28]. These cavitational effects for symmetric problems depend on
response of the body to extension. But similar steady state effects hold for shear. Antmat
showed that the qualitative behavior of a compressible elastic body under shear depel
crucially on whether the (Piola—Kirchhoff) stress is super- or sublinear in the stretct
for large stretches, with a serious singularity occuring for sublinear behavior. In order
investigate whether such phenomena could arise in our dynamical problems, we exar
both super- and sublinear stress-strain laws. (The models of material response use
[32, 33] do not account for such growth.) We also carry out a careful validation of o
methods, described below. For analyses of the Riemann problem see [15, 22, 30, 35].

Our method is robust and effective in capturing shocks and other kinds of sharp interfa
It is our adaptation to the more complicated equations of nonlinear elasticity of methc
widely used in gas dynamics [24, 26] which is a fundamental theme of our work. In particul
we compute shearing shocks in solids, which are not present in compressible fluids. (St
shocks in gases are numerically treated in [38], for example).

Our work may be regarded as a first step toward devising effective methods for trea
focusing effects for solids with nonlinear constitutive equations governed by equatic
with a hyperbolic character. Such solids include those described by theories of large-st
plasticity. Various steps in the numerical study of problems for such materials incorpor
steps for elastic materials, which we are studying and validating here.

As part of our study, we examine the role of nonlinear constitutive assumptions. C
constitutive relations for shear give rise to isolated points at which the flux fails to be ge
uinely nonlinear in the sense of Lax [21]. At these points, detected during the compu
tion, the numerical algorithm is modified. We treat several nonconvex flux functiot
(cf. [37]).

Among the methods recently developed for obtaining solutions in regions with boundat
of general shape are (i) Cartesian grid methods with a uniform rectangular computatic
mesh, for which the boundary of the domain is given special treatment inside the m
[1,9, 23]; (ii) the use of unstructured body-fitted grids of triangular or tetrahedral cells [3¢
(iii) interpolation in a conservative manner on overlapping grids [10]; and (iv) the use
body-fitted structured grids [8, 17, 24]. We use the last method because it generally per:
a more accurate treatment of the boundary conditions than (i) and it is easier to implen
than (ii) or (iii). This method must be used with great care, however, to prevent solutic
from being contaminated by the singularities of the coordinate transformations. We st
how to do this.

We present examples showing that our numerical method is effective in capturing sho
that arise in systems of strictly hyperbolic conservation laws. (See [13] for other methods
systems of conservation laws.) Because of the nonlinearity of the equations, a closed-f
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analytic solution is not available with which to compare the computed solution. Moreov
there are no available error estimates for our system. Consequently, we must carry ¢
rather intricate program, in which axisymmetric problems play a central role, to valide
our results:

(i) We compute the analytic solution to aninitial-boundary-value problem for the axisyr
metric linear wave equation, on the unit disk, by separation of variables in polar coordina
The axisymmetric initial data are supported on a smaller concentric disk.

(i) We compute the solution of the same problem by our Godunov scheme. Agreem
with the exact analytic solution of step (i) justifies the accuracy of the computed solutic
These computations are delicate because of polar singularity at the origin.

(iii) We compute the solution to the initial-boundary-value problem in polar coordinat:
for the axisymmetric quasilinear wave equation, on the unit disk, with small initial da
by the Godunov method, and compare this solution to that of the linear equation with
same data for small time. Since the solutions are in agreement for small time becaus
the initial linearity of the nonlinear problem, we compute with confidence the solution
axisymmetric quasilinear problems in one dimension by our Godunov scheme for a lon
time.

(iv) We use the Godunov scheme with one-dimensional fluxes to compute the solut
to the same initial-value-problem for the quasilinear wave equation in two-dimensiol
Cartesian coordinates on the unit square. Our methods do not exploit the axisymmetry
validate this solution by comparing it to the solution of step (iii) up to the time that the wav
hit the circular boundary of the unit disk. This problem enables us to make this compari
without worrying about boundary interactions.

(v) We compute the solution to the axisymmetric quasilinear problem for large times
our Godunov scheme with one-dimensional fluxes by using body-fitted coordinates, wt
do not exploit axisymmetry, on the unit disk with two independent spatial variables. \
verify its accuracy by comparing its solutions with those of steps (iii) and (iv).

The development of this algorithm gives rise to numerical schemes capable of hand
the polar singularity, which is a byproduct of our study of the axisymmetric problem (fo
mulated in polar coordinates). The one-dimensional scheme that handles the axisymm
problem is effective in calculating accurate solutions to the quasilinear wave equation
keeping the polar singularity under control. (The polar singularity, because of that of 1
coordinate system, does not arise in Cartesian coordinaes)r graphs show, the two-
dimensional solutions accurately reproduce the profiles of the carefully constructed
one-dimensional solutions

Section 2 gives a brief formulation of the antiplane shear problem of nonlinear elastic
and of the governing quasilinear hyperbolic system. In subsequent sections, we carry

steps (i)—(v).

2. THE ANTIPLANE SHEARING PROBLEM OF NONLINEAR ELASTICITY

Let{i,j, k} be an orthonormal basis for Euclidean 3-space. We identify a material point
a body by its positioxi + yj + zk in a reference configuration of the body, or more simply
identify the material point by its Cartesian coordinatesy, z). Letp(x, v, z, t) denote the
position of(x, y, z) at timet. We study deformations of an incompressible, homogeneou
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isotropic, nonlinearly elastic body for whighhas the form

px,y,zt) =xi+yj+[z+ w(,y,)]k. (2.2)

In this very special kind of motion, each material paixt y, z) can suffer only a “vertical”
displacemeni(x, vy, t) in thek-direction. Consequently, the motion is governed by a partia
differential equation for the scalar

wyt = [a(wf + wi)wx] + [a(w)z( + wf,)wy] (2.2)

X y

where subscripts denote partial derivativess a given constitutive function af? + w§,
anda(wf + wi)wy is the shear stress in tikedirection on a plane with normal[3]. (It
can be shown that for a given functionwe can always obtain a stored-energy function
satisfying Knowles’ [19] compatibility conditions for antiplane motions.) Equation (2.2) i
virtually the only kind of exacscalarpartial differential equation of motion for a deformable
solid. As such, it furnishes a particularly convenient setting for numerical studies. Withc
loss of generality, we take the mass density to be 1.

The quasilinear wave equation (2.2), which gives a material (Lagrangian) descriptior
the motion, is the object of our study.

3. PROBLEM FORMULATION IN POLAR COORDINATES

Inthis section, we seek axisymmetric solutions of (2.2) on the@isk {x, y : x* 4+ y? <
1} in the form

wX, V) =wr) =w(H/X2+y2), r=+/X2+Yy2 (3.1)
The substitution of (3.1) into (2.2) reduces it to
rwy = [roc(wrz) wr]r, (32)

where we have dropped the circumflex fram We study (3.2) for < r < 1 subject to
initial conditions of the form

w(r,0) =W(r), wi(r,00=0 (3.3)
whereW is prescribed, to the boundary condition
w(l,t) =0, (3.4)

and to the requirement that be regular at = 0.
We set

v=ruw;, U= w (3.5)
and definef (u) = a(u?)u. Thus, our initial-boundary-value problem is to solve

ve={rf (W}, u = @/r) (3.6)
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subject to

u(0,t) =0, v(l,t) =0, 3.7)
ur,0) =W (), v, 0 =0. (3.8)

For compatibility, we require that/(1) = 0.
The matrix version of (3.6) is

Ug +f(u,r)y =u +Auy +s(u,r) =0 3.9
where
u= (ﬁ) f(u,r) = _(rz/(:)), (3.10)
0 rfy —f)
A__<1/r 0), s(u,r)_( o/r2 > (3.11)

The eigenvalues,, A, of A are

Mm=—V"Tu, r2=+fu (3.12)

and the corresponding right and left eigenvectorA afre

M = (r\/ﬁ) o= <_r\/_fa>, (313)
1 1
li=d, ry/f), o=@ —ry/f). (3.14)
Since

fuu fuu

. (VyA2) - o = ,
e (Vyrp) - 12 2T

system (3.6) is genuinely nonlinear in the sense of Lax wtigre 0. The flux function

f, which is odd by definition, could be super- or sublineardos 0. We consider only
materials for whichfy, is everywhere positive. Hence, our constitutive relations ensure th
our problem is strictly hyperbolic [21].

(Vury) -1 = —

(3.15)

3.1. Numerical Formulation

In this section, we describe the numerical algorithm used to obtain solutions of
system (3.6)—(3.8). We integrate the product of (3.6) with tver a typical rectangle
[r=,r*] x [t~, t*] to obtain

r+ t+
/ [u(r, t*) — u(r, t)] dr =/ [rv(r+,t) — rg(r*,t) dt, (3.16)
r— t—

rt t+

/ [v(r,t™) —v(r, t7)] dr =/ [rfuet, ) —r= fe,t)]dt, (3.17)
r- t-



206 LOTT, ANTMAN, AND SZYMCZAK

wherev = rwy. (These “impulse-momentum” laws are of course more fundamental th:
the classical equations (3.6).)

We formulate and implement a second-order Godunov-type scheme with a conserve
finite-difference update that utilizes slope-limiting and explicit predictor-corrector time
stepping. Since this approach is also used in [5, 12], its description here will be brief.

We divide the domain [0, 1] intdN cells [ri_1,ri],i =1,..., N. Leth; =r; —rj_1 be
the length of each cell argl_1/, = %(ri + ri_1) be its midpoint. The numerical algorithm
consists of the following procedures:

1. Computation of the Time-Stejphe time-step is computed by taking into account
the Courant—Friedrichs—Lewy (CFL) condition for shear waves. Specifically, the expli
stability bound is

h.
At < KF', (3.18)

whereK is a constant less than 1, ands the shear-wave speed. In our computations, w
takeK = 0.7.

The wave speeds= +./T, are the eigenvalues of the matAxand are approximated
by the formula

- flu+e)—fu—e
fu= % s

(3.19)

which approaches “the wave speed” in the limiteas> 0. The computed wave speeds at
the cell centers are

&Mt = ctu) = £/ fu. (3.20)
Thus, the maximum stable time-step is computed by using
(olas
At{m_ax;]—} < K. (3.21)
I i

2. Slope Calculation and Limitingie maintain second-order accuracy of the computa
tions by constructing slopesu’ from the solutioruy by using the piecewise linear profile

u'r) =u + (r —ri_2) Al forrisg <r <rj. (3.22)

Given the right eigenvectorg} of A, we express the central, forward, and backwarc
differences ofi as linear combinations of thg

1
E(Ui+1 —Ui—1) = Z mgr,
(Uis1— U) = Z miry, (3.23)
(U —uj—y) = Z Mmer i
fori =1,...,Nandk = 1,2, 3. Then(Au); = >_ mgr¢ where

{min{|m§ ,y|mi
my =

0, otherwise

.y |mi | }sgn(mg) if mimi > 0, (3.24)
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wherey is a parameter in the interval [1, 2] that controls the implicitly added local viscosit
Throughout this paper, we take= 2, except in the presence of a local linear degenerac
in which case, we set = 1 (cf. [7]).

3. Prediction of the Solutianin the predictor step, we advance the solution one ha
time-step by using a first-order approximation given by the explicit centered-differer
formulas

u = — 2:] [5r7) — B )], (3.25)

~n+1/2. _ ~n At" ) nep— ) N+

v, =0 — o ~[ri (7)) —rica fU(rm )], (3.26)
I’|—1/2h|

where v'= w;. We have slightly modified the standard formula derived from (3.17) i
obtaining (3.26) in order to get an equation fo="w; rather than fon = r w;. Second-
order accuracy is recovered in the correction step, below.

4. Computation of the FluxThe computation of the flux is the most distinctive feature
of the approximate Riemann solver of Davis. We define the valuas ahdug, at the cell
boundaryr; by

u = uM2 ) = UMt 4 %(Au)i, (3.27)

ur = U™ = ul? - %(Aum, (3.28)
and the numerical average fluxraty

frez finﬂ/z(u”“/z(ri‘), u"t 2 (). (3.29)

We compute upper and lower bounds on the wave speeds

o'w? = max(c* (ug). ¢t (uL)), (3.30)
= R, (3.31)

wherect is defined in Eg. (3.20). Hence, an approximation to the average flux across e
cell boundary is

fin+1/2 — % [f(un+1/2(ri+)) + f(un+1/2(ri—))] + %Cin;l/Z [un+1/2(ri—) _ un+1/2(ri+)] .

(3.32)

5. Correction of the SolutiorFinally, the solution is corrected by using the flux approx-
imations from Step (4) to obtain

u

A" . ~
ML gp - SR ) (3.33)

i i hi i _fi—l

As in the predictor step, we modify Eq. (3.17) for numerical coding. For more details
this algorithm, see [5, 12].
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3.2. Preliminary Numerical Results

In this section, we present numerical results for different solutions to the nonlinear we
equation (3.2) given specific initial conditions and specific material behavior. We solve t
system (3.6)—(3.8) with

N =400 K =07, (3.34)

with a quasilinear flux function of the form

f(wy) = a(wrz) wy, (3.35)

and with the following choices af (w?):

1
a1(w?) =1, ap(wf) = ——a ag(w?) = \/1+ wd. (3.36)

(1+u?)

The termf is respectively linear, sublinear, and superlinearfgre,, andos.

Before proceeding with steps (i)—(iii) in the Introduction (Section 1), we first validate tf
effectiveness of our scheme in capturing shocks. We briefly study the evolution of sh
waves for aCt initial function W of the form

25 x 10°%(r —0.4)%(r —0.6)2, 04<r <0.6,
W() = . (3.37)
0, otherwise
so that
10 — 0.4)(r — 0.5 —0.6), 04<r <0.6
Wi (r) = . (3.38)
o, otherwise

We compute the solution to the wave equation for these initial data (see Fig. 1a). For
linear wave equation = «1) we do not obtain shocks, since the wave speeds are consta

o @] 4F o
2 L 4 2t -
0 0 /kAJ
2k 4 oL -
4+ . 4 F : -
0 05 1 0 05 1

0 0.5 1 0 0.5 1

FIG.1. The shear straim, computed with nonlinear flux functian= «,. (a)t = 0.0, (b)t = 0.1, (c)t = 0.2,
(d)t =0.3.
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For the nonlinear flux function with = o>, we obtain left- and right-moving shocks shown
in Figs. 1c and 1d with the latter exhibiting fully developed N-waves. In refining the gri
from N = 400, 800 to 1600, we find that the numerical method continues to capture t
shock within four cells. Note that the speed of the wave at the back of the right-movi
shock is greater than that of the wave speed in the front of the shock. The lack of symm
of solutions about = % is of course due to the polar coordinates.

We now proceed with steps (i)—(iii) and consider the initial function

1

-2 ifr <3,
W(r) = ) (3.39)
0 otherwise

We first consider the purely linear wave equation (witk= «1) subject to the continuous
initial data (3.39) which will demonstrate the effectiveness of our schemes in capturi
shocks wheW; (r) is discontinuous. The availability of an analytic solution for the initial-
boundary-value problem (3.2)—(3.4) enables us to validate our solution constructed by
Godunov scheme. We initially compute our Godunov solution on annuli with tiny inner ra
e =1073,104,107°, 10°%, with the (natural) boundary conditian, (¢, t) = 0, to verify
that possible singularities at the origin do not contaminate our numerical solutions. Tl
do not. Indeed, the results for smallre indistinguishable from those fer= 0, which
we present here. (Care in handling the polar singularity in nonlinear elasticity is dicta
by the appearance of surprising physical singularities at the origin for radially symmet
problems; cf. [3, 27, 28].)

The solution of this problem that is regular at the origin is

w(r, t) =Y AnJo(kal') COSAnt) (3.40)
n=0
where

_ Jo W) Jo(har) dr
A Gan)2dr

(3.41)

Here Jo (&) is Bessel's function of order zero, which satisfies the linear differential equatit

E°Rec +ER: +£°R =0, (3.42)

andAi, are the roots ofly(A) = 0, obtained from the boundary conditiar(1, t) = 0.

In Fig. 2, we plot approximate solutions of our initial-value problem with initial dat:
(3.39) obtained by (i) the Godunov scheme with (3.34) and (ii) a truncation to 100 terms
the series (3.40). Note that the agreement appears excellent except at the jumps. The
solution is superior in that it has sharper jumps, but it is inferior in that near the jumps,
graph is contaminated by the Gibbs phenomenon (cf. [18]).

There are small oscillations occurring at the origin (which are not discernible) in t
plots of the displacement versus found by our Godunov scheme for nonlineae «;
as the wave moves away from the origin and out toward the boundary. These oscillati
are an effect of the singularity at= 0 and are minimized by increasing the resolution
near the origin. We have imposed the boundary conditioi®, t) = 0 to ensure regularity.
Oscillations are not present in graphswgf (Fig. 3). The numerical scheme is capable of
capturing the left- and right-moving waves. Note that the dissipative nature of the sche
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Wr

_0'5 I ] | ':I
0 0.2 04 0.6 0.8 1

r

FIG. 2. The shear straim, as a function of att = 0.3 for the linear problem with initial condition (2.39).
The solution computed by our Godunov scheme is plotted with the solid line and the truncation to 100 term
the solution computed by separation of variables is plotted with the dotted line.

decreases the degree of steepness. When the left-moving discontinuity is reflected f
the origin, it is inverted since the origin is an intact boundary. When the right-movir
discontinuity is reflected from = 1 it is not inverted, and it maintains its steepness unti
the two shocks interact, prior to= 1.

To validate the accuracy of the numerical solution of the quasilinear problem, the resi
are compared to the solutions obtained numerically for the linear problem. For small d

1.5

0

-1.5
1.5

t=0.3 t=0.4
0

-1.5

0.5
0
-0.5

0.5
0
-0.5

t=0.9]
1

0 0.5 10 0.5 1

FIG. 3. The shear strainw, versusr for nonlineara = o, computed in polar coordinates at 0.0,
0.1,...,1.0. Note that the scale changeg at 0.6.
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0.5 T T T T
0.4 &
0.3
0.2
0.1
!
01 |
-0.2
-0.3
-0.4

Wr

0 0.2 0.4 0.6 0.8 1

FIG. 4. The shear straim, versusr for (3.2) att = 0.3 computed in polar coordinates with= «; (solid
line), o, (dashed line) and; (dotted line).

and small evolution time, we expect the nonlinear solution to give results similar to thc
for the linear wave equation since the effects of the nonlinearity are not yet manifest
These solutions are in complete agreement for small data and small time (we omit
details).

Figure 4 is a spatial plot af, versus att = 0.3 for ax, k = 1, 2, 3. In Fig. 4, we note
that the wave speeds for superlinegiare greater, thereby causing the wave to move faste
toward the origin. Similarly, the plot for sublineag lags behind. The same phenomenon
is present in plots of displacement, which have been omitted for space limitations. N
that the right-moving shock fronts faers are much sharper than both the correspondin
discontinuity for the linear equatiom (= «1), and the right-moving rarefaction wave for
a. The converse is true for the left-moving shocks.

In analogy with our study of the Godunov scheme on annuli with small inner r
dius ¢, it is instructive to study the solutions by separation of variables. Here we ta
the boundary condition on the inner radius toibde, t) = 0. By using standard prop-
erties of Bessel functions we find, just as for the Godunov schemes, that the soluti
for smalle are indistinguishable from those for the complete disk. (The eigenvalues a
eigenfunctions found in the solution process for smalre themselves indistinguishable
from those for the complete disk, in keeping with the Weyl theory of singular eigenval
problems.)

4. PROBLEM FORMULATION IN CARTESIAN COORDINATES

Inthis section, we study (2.2) in Cartesian coordinates onthe sQuarégx, y : —1 < X,
y < 1}. We write (2.2) as

Wit = f(w)(s wy)x + g(U)x, wy)y (41)
with

f(wy, wy) = a(wi + wi) wx, O(wy, wy) = a(wi + wf,) Wy. (4.2)
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By settingu = wy, Z = wy, andv = wy, we convert (4.1) to the first-order system

v = f(U,2x +9(u, 2)y,
Uy = vy,

Zt = vy
subject to initial conditions
w(X,y,0 =W, y), vxy0=0,

and boundary conditions

v, y,t)y =0=v(1,y,1), v(x,0,t) =0=w(x,1,1).

We write Eg. (4.3) as the matrix system
Uy + fx + gy = Oa

where

v f(u,2 g(u, 2)
u=|(u], f=- v » 9= 0 :
Z 0 v

Consider the operator-split systems

U +fx = uy + Auy =0,
U +0y= U +Buy =0,

where
0o f, f, 0 au 9
A=—-]11 0 0|, B=—|0 0 O
0 0 O 1 0 O

We construct a solution of the full system from solutions of these by implementing

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)
(4.9)

(4.10)

algorithm similar to that devised in Section 3.2 for thandy problems. In particular, we

approximate the fluxes for (4.8), (4.9) along theandy-coordinate lines successively (i.e.,

we compute the fluxes by looking at each direction separately). The method of alterna
solving (4.8) and (4.9) is typically used in gas dynamics (where the equations are thos
a degenerately elastic body) [38]. Itis also implemented in the calculation of the time-st

and the slopes.
The eigenvalues & are

M=—Vf =0 33= V1,

(4.11)
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and the corresponding right and left eigenvectorA aire

VT 0 VAN
ry= 1 |, r3=|—-f|, rj= 1 , (4.12)
0 fu 0
|)]f = (\/TLH fl.,Ia fZ)v ; = (Ov 0, 1)1 é = (\/TU7 - st - fZ) (413)
Thus,
(Vurg) -1 = :Fﬂ k=13 (4.14)
2\/f—u7 9y bl

so that (4.3) is genuinely nonlinear whefg, # 0. Sincer = 0, the 2-wave is linearly
degenerate.
Similarly, the eigenvalues @& are

M=—-y0 A=0 AM=0, (4.15)
and the corresponding right and left eigenvectorB afe
V0% 0 —V%
= o |, B={-9] rj= o |, (4.16)
1 Qu 1
=% 00 13=0210, I3=(/T —Gu —%) (4.17)
Thus,
Vo) r =2 k=13, 4.18
(ki) Tk =% o (4.18)

so that (4.3) is genuinely nonlinear whegg # 0. Since)% =0, the 2-wave is linearly
degenerate. Also, we consider a reasonable class of materials for fyhi€ld andg, # 0.
The functionsf (-, z) andg(u, -) are odd and can have any growth; e.g., they could b
superlinear or sublinear. K, or g, should vanish at any point, the system (4.3) is nonstrictl
hyperbolic and has an eigenvector deficiency. (The phenomenon of nonstrict hyperboli
and eigenvector deficiencies, which greatly increases the difficulty of the numerics
addressed in [7].)

4.1. Numerical Formulation

In this section, we formulate a Godunov-type method and numerically compute 1
solution to an initial-boundary-value problem for (2.2) on a square mesh. The data are <
that the solution is axisymmetric for a while, but our formulation does not exploit this fa
This exercise corresponds to step (iv) of the Introduction (Section 1). This formulation i
two-dimensional extension of the method described in Section 3.1. The time-step restrict
are computed by using the appropriate time-steps for the operator-split systems. Simil
the slopes are computed in tkeandy-directions separately.

We discretize the domain [@] x [0, 1] into N M cells given by ki, xi—1] x [Y;j, Yj-1l,
i=1...,Nandj=1,....,M.Leth* =% — X1 andhjy =Yj — Yj—1. The numerical
algorithm is as follows:
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1. Computation of the Time-Stephe time-step is computed for tixe andy-directions
according to the explicit stability bound defined by the CFL condition (3.18). The minimu
of Aty andAty is taken as the global time-stey".

2. Slope Calculation and Limitindror (4.8), slopes are computed alongxheoordinate
lines from the solutiorui”j by using a piecewise linear profile (3.22)xnWe now define
(Axw)ij = > myr § where

min{|mg|, y |mi|. ¥ [mi|}sgn(m¢) if mimj >0,
my =
“ 0, otherwise

(4.19)

and themy are defined by

1

E(Ui+1,j —Ui-1j) = Zmﬁrﬁ,
Uips) —Uij) = Y mrk, (4.20)
Ui = Uims)) = Y mirg,

which are the central, backward, and forward differences. dquation (4.9) is treated
similarly.

3. Prediction of the Solutionin the predictor step, we advance the solution one hal
time-step by using a first-order approximation given by the explicit centered-differen
formula

AtD _
uif}+1/2 =u} - hE [fF(u(x, Yi—12)) — F(u(X 1. Yj-1/2)]
]
= A o(u(x 12 ¥)) — 9(U( 32 V)] (4.21)
2th i—1/25 j i—1/25 j—1 . .

Here, predicted fluxe$(u(-, yj_1/2)) are computed along-coordinate lines while the
g(u(xi—1/2, -)) are computed along-coordinate lines. (Second-order accuracy is recov
ered in the correction step, described below.)

4. Computation of the Fluxn two dimensions, itis necessary to compute an approximat
average flux atx;, y;). In order to do this, we define the valuewtt the cell boundaries

by

u. = U2 (x7, Y1) = ui”j”l/z + %(Axu)i,j, (4.22)
ug = UM (%t yj_1p0) = Urrll/jz - %(Axu)wrl,j» (4.23)
Us = U™ (x 1, ) = U % + %(Ayu)i,i» (4.24)
ur = U™Y2(x g0, v ) = Ul - %(Ayu)i, i+1, (4.25)
and the numerical average fluxegat y;) by
B = B2 U206, 1o)UY, Y ), (4.26)

@ir}+l/2 = ginj+l/2(un+l/2(xi—l/27 Yi) uMt2 (x5 _q 0, yi))- (4.27)
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We compute upper and lower bounds on the wave speeds

o'? = max(c* (ug). ¢* (uL)). (4.28)
¢ft? = max(c* (ur), c* (up)). (4.29)

where in Eg. (4.288" is computed by using Eg. (3.20), and in Eq. (4.29)is computed
by using the analogous

¢ =c*(u, 2 = +/0. (4.30)

Hence, approximations to the average fluxes across each cell boundary are

2 = M2 vy 1)) + 0200, vy 1)
IR0y, 1) 0RO Y ag)] (@)
oY = %[g(un-kl/Z(xiil/zy y)) + HU 206 172, y7))]
o (X ) Uy (432

5. Correction of the SolutionThe solution is corrected by using the flux approximations
to obtain

A"
hi

n+1
ij

~ ~ A" R
(2 =077 — S [ay ™% - a2 (4.33)

u hY
J

N
= U —

Note that the scheme is posed in unsplit form even though the flux approximations
computed by using the operator-split formulation.
We discuss solutions based this formulation in Section 6.

5. PROBLEM FORMULATION IN BODY-FITTED CURVILINEAR COORDINATES

In this section, we begin our treatment of step (v) of the Introduction (Section 1) |
formulating (2.2) on the unit disk = {x, y : x*> + y? < 1}. We begin with a description
of the mesh transformation for any doma&nwhich is diffeomorphic to a unit square.

5.1. The Transformation

Consider the transformation= x (&, n), y = y(&, n) from the computational rectangle
R=1{,7n:0<& <M, 0<n < N},whereM andN are positive integers, to the physical
domaing2. The transformation gradient may be expressed as

a/0X _ 1 (yﬂ —yg) a/0&
a/ay XeYn — Xp¥e \ =Xy X a/dn

L ifa s (o0 _ 1 [0/
=3 (Q2 52> (a/an> =50 (a/an>’ G1)

whereJ = X: Y, — X,V is the Jacobian of the transformation.
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5.2. Transformed System

As in Section 4, leti = wy, z = wy, v = wt. Then (2.2) may be expressed as (cf. 4.3)

v — (a(U, 2U)x — (a(U, 2)Z)y = 0,
Ui —vx =0, (5.2)

Zy — Vy = 0.
Applying the transformation (5.1) to (5.2) we obtain

JUt — qu(a(l, 20): — Q2(a(l, 2)2); — s1(a (T, 2)0), — $(a(l, 2)2), =0,
Jlt — g — 510, =0, (5.3)
JZ — (Ve — S0, =0,

wheref(g, n) = f(xX(&,n), y(&, n)). Equation (5.3) can be expressed in conservative forr
as

Iy — (a(@, (i + 022)s — («(T, 2) (510 + $2)), =0,
Jlit — (d)g — (s10), =0, (5.4)
JZ — (QeV)e — (20)y =0,

where we have explicitly used the fact that
d: +s, =0, (5.5)

which follows immediately from (5.1). The equations (5.4) are now in the same form
as the system (4.6) (with, n replacingx, y and with the factorJ multiplying the time
derivatives.) Note that the flux functions

f1 O1
f=|f|, 9= (5.6)
f3 O3

5.3. Discretized Metric Coefficients

have new definitions.

In the computational space, the grid cells are unit squares with verficegX= (., j)
fori =0,...,Mandj =0,..., N. Discrete values aof] are defined at the centers of the
vertical edges of the unit squares, while discrete values éoe defined at the centers of
the horizontal edges by

Qioap= | T fori=0,...,M,j=0,....,N—-1  (5.7)
—(Xi j+1 — Xi,j)

Surz; = | ViR qori—0. . M—1j=0...N, (58)
' Xi+1,j — Xi,j

Xij = X&,nj), Yij = Y& nj). (5.9)
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Note that
Qit+1j+1/2 — Oi,j+1/2 + S+1/2j41 — S+1/2] =0, (5.10)

istruefori =0,...,M —1andj =0,..., N — 1, corresponding to a centered difference
approximation to (5.5) at the center of each cell. This property is important in preserv
second-order spatial accuracy of the transformed conservation equations. The Jacob
defined at cell centers by using centered difference approximations for each derivative t
based on the values at the four corners of each cell.

5.4. Grid Generation

To generate a grid on a (simply-connected) planar regiave first divide its boundary
a2 into four separate curves, which are described parametrically by function@, &}
Xp(€), Xt(£), [0, 1] 2 n — X (n), X(n) [20]. (The subscripts b, t, I, r stand for bottom, top,
left, right of the squargs, n : 0 < £ < 1,0 < n < 1} into whichQ is going to be mapped.)
For our problem, we take

o (MO _ (@12
ST\ ) Vit xe? )
X (TI) _ Xr(n) _ V 1- yr(n)2
r Ye(1) @ -1vN2)

(5.11)

We map the squarg, n: 0 < £ < 1,0 < n < 1} to by the functionk defined by the
interpolation formula [20]

X, m) = (1= mXo(&) + nxe(§) + (1 — E)Xa(n) + EXe () — {Enxe(D)
+&@ — mMXxp(D) + n(1 = &)X(0) + (1 — §)(1 — mMxp(0)}. (5.12)
We now define our mapping of R to Q by x(&, n) = X(¢§/M, n/N). The grid on€,

illustrated in Fig. 5, has intersection pointsxdt, j), and the curves constituting the grid
in Q are given by — x(&, j) andn — X(i, n).

5.5. Boundary Conditions

Boundary conditions are implemented by specifying appropriate values for the fluxes
cell faces that form part of the boundary. For example, the conditierD"at the boundary
implies that

(f2)o,j+1/2 = (f3)0,j+1/2 = (fIM,j+12 = ()M, j+12 = 0, (5.13)
(92)i+1/2,0 = (93)i+1/20 = (@2)i+1/2N = (F3)i+12n =0 (5.14)

fori=0,...,M—1andj =0,..., N —1. Boundary values for the fluxef andg;
corresponding to the first equation in (5.4) are less obvious. $ire® 0naR, it follows
from (5.4) that some approximation {d1): + (g1), = 0 should also be imposed. For
example, along the boundairy= M, the functionf; is determined by using

(fOM,j+172 = (F)M-1j+172 — @DM+1/2,j+1 + (G M+1/2, (5.15)
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FIG. 5. The physical grid discretized by using (5.11) and (5.12) Noe= M = 10. The top and bottom
boundariex; andx, are plotted with solid lines. The left and right boundasieandx, are plotted with dashed
lines.

forj =0,..., N — 1, with similar formulas along the boundaries: 0, ] = 0 andj = N.
We remark that this specification of the fluxes is equivalent to settiag0"inside all the
cells adjacent to the boundary and hence is only a first-order accurate treatmheat
the boundary and only where there are severe distortions of the gridThis treatment
of boundary conditions removes spurious oscillations appearing as a wave approache
boundary along a diagonal when the problem is treated by the technique mentioned in
next subsection. This instability is caused by the severity of the grid distortion near th
points.

5.6. Faulty Alternative Formulations

We conclude Section 5 with a warning about the formulation of Eq. (2.2) in generaliz
coordinates. Following [20, 25, 31] we may first transform (2.2) into generalized coordina
and then express it as the system

Jup = fUE. 0. 1), 26, 0.0, & e +9WUE, 7. D), 2. 0. 1), &, 1)y,
Uy = vg, (516)

2t = vy

where

(V2 + %), (5.17)

D>
I
[S =}
—~
S
+
x
=
[E =}

v=1w, U=We, Z=1W,.
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Note that the evaluation of the discrete fluxes in this formulation requires that all met
coefficients be defined at all four cell edges. Thus, the simple discretizations (5.7) and (
do not suffice in this formulation. We have experimented with several discretizations
the metric coefficients using this formulation including central differences and the use
“exact” derivatives obtained from differentiating (5.12) explicitly. In all tests, spurious o
cillations appear near the intersection of the boundary and the diagogaisx, where the
grid is severely distorted. These oscillations, which destroy the axisymmetry, are illustre
in Fig. 12.

6. NUMERICAL RESULTS

In this section, we present computations supporting the effectiveness of the numel
method in two dimensions. We consider the following cases which correspond to (3.36

1
(1+ w2+ w?

az(wg +wy) = /14 wZ + wl.

We shall solve systems (4.3) and (5.4) with the following choice of parameters:

(6.1)

N=M=200 K =0.5, (6.2)
1_X2_y2 isz—{-yzfl,
Wx,y) =< * C (6.3)
0 otherwise

As in the model formulated in polar coordinates, we first compute the analytic soluti
to the linear wave equation (4.1) (for whieh= o1 = 1) by separation of variables subject
to initial and boundary conditions

wO,y,t) =0=w@, y,t), wy(X,0,1) =0=wy(x,1,1) (6.4)
w(X,y,0 =W(,y), wi((X,y,0 =0. (6.5)
Hence,
w, Y1) =YY" AumWnm€Os\/n? + m?t, (6.6)
n=1 m=0

whereV,, = sin(nz x) cogmsxy) and

_ Jo JyW(x. y) ¥nmdx dy
a fol fol w2, dx dy .

The solution is then calculated in Cartesian coordinates by using the second-order Godi
scheme to obtain partial verification of the accuracy of the scheme. We find results sinr
to those in the one-dimensional evaluation: The solutions are in agreement and the s
solution exhibits oscillations near the discontinuities. These figures have been omitted

(6.7)



220 LOTT, ANTMAN, AND SZYMCZAK

0.05 .

-0.05
-0.1

0.05

-0.05
-0.1

0.05 - .

0

-0.05 .
t=0.8

-0.1 I 1 I 1 N

0 02 04 06 08 1

FIG. 6. The displacement versug for the quasilinear wave equation with= o, att = 0.4, 0.6, and 08.
The solution computed using polar coordinates is plotted with the solid line and the Cartesian coordinate solt
is plotted with the dashed line. Boundary interactions first occur nea®.48. Note that the solutions coincide
until effects of the boundary interactions are significant.

We now focus on the verification of two-dimensional results by comparing solutiol
computed in Cartesian coordinates and the body-fitted curvilinear coordinates with th
obtained in polar coordinates. Our first results are restricted to the two-dimensional solu
on the squar€. We compute the solution to the linear wave equati®r= «;) and the
guasilinear wave equatiofex = «p) in Cartesian coordinates d@ with initial function
(6.3), corresponding to (3.39), which is supported on a small disk.

Figure 6 is a plot of the displacememntversusr for the axisymmetric problem com-
puted in polar coordinates and the same problem computed in Cartesian coordinate
various times. Note that the solutions are in agreement until the right-moving wave fi
hits the right boundary. Since the problem solved on the square does not impose ax
mmetric boundary conditions, we see that the solutions diverge once interaction with
boundary takes place. This agreement, up until interaction, supports the accuracy of
two-dimensional scheme on the square. We conclude that the two-dimensional solu
obtained using Cartesian coordinates is extremely accurate prior to boundary interacti

To conclude this analysis, we study the fully two-dimensional computation of the soluti
by a Godunov-type scheme on the disk on a time interval large enough for bound
interactions to come into play. For this solution, we used the formulation (5.1)—(6.5). C
boundary conditions corresponding to (3.7) are

v(0,n7,t) =0=v(L,n,t), vE,01t)=0=wv(,11). (6.8)

Figures 7 and 8 exhibit the vertical displacementersus , computed by our three dif-
ferent approaches witlh = o, att = 0.3. In the illustrations, P, C, and B denote solutions
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0 0.2 0.4 0.6 0.8 1

r

FIG.7. The shear straim, versug for the axisymmetric quasilinear problem = «,) att = 0.3 computedin
one dimension using polar coordinates (P), and in two dimensions using Cartesian coordinates (C) and body-
coordinates (B).

computed using polar coordinates, Cartesian coordinates, and body-fitted curvilinear c
dinates, respectively. Solutions computed using the body-fitted coordinates are displz
along the liney = x. Virtually identical results are found along thxeandy axes prior

to boundary interactions. Solutions displayed in polar coordinates are computed with
points. In Fig. 7 the numerical method captures the left-moving shock within approximat:
four cells.

It is clear that the two-dimensional numerical scheme in Cartesian and body-fitted
ordinates is capable of computing accurate solutions. Of course, we expect the solut
to diverge once interaction with the boundary occurs. We also expect some disagreer
in the solution computed by using body-fitted coordinates since the boundary is artifici
approximated by a finite number of mesh points.

Figure 9, however, shows how the solution computed with the body-fitted coordina
agrees closely with the polar coordinate solution after interaction with the boundary. We
conclude that the two-dimensional second-order Godunov scheme is capable of calcul:

-0.6 1 1 ] ]
0 0.2 0.4 0.6 0.8 1

T

FIG.8. The shear straim, versug for the axisymmetric quasilinear problem = «,) att = 0.6 computedin
one dimension using polar coordinates (P), and in two dimensions using Cartesian coordinates (C), and body:-
coordinates (B).
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w
-0.04
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FIG.9. The displacement versug for the axisymmetric quasilinear problgm = «,) att = 0.8 computed
in one dimension using polar coordinates (P), and in two dimensions using Cartesian coordinates (C), and k
fitted coordinates (B). Note that the Cartesian formulation is not accurate because of boundary interactions.

accurate solutions when nonconvex constitutive relations are incorporated. Figures 10
11 show the three-dimensional graphsspfat two different times foar = 3. These figures
indicate how-effectively axisymmetry is preserved even though the numerical scheme
not account for it.

Finally, let us describe what happened we computed the solution to (2.2) in the tv
dimensional generalized body-fitted coordinates using the faculty alternative formulat
based on (5.16). The boundary conditions (5.13)—(5.15) were expressed in terms of the:
ables of this system. In each case, the solutions computed=fos;, ap, azfor0 <t <1
and for variousN andM, when restricted to the x-axare in excellent agreement with the
polar coordinate solution before and after boundary interactions. Moreover, the solut
on thex-axis continues to converge to the polar coordinates solution for fixees grid
refinements are performed.

FIG. 10. Graph of the shear straim, plotted over the(x, y)-plane plane with 200 mesh points for the
axisymmetric quasilinear problefe = «3) in body-fitted coordinates at the tinhe= 0.3. The contour lines are
shown in the(x, y)-plane.
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i

FIG. 11. Graph of the shear straim, plotted over the(x, y)-plane plane with 200 mesh points for the
axisymmetric quasilinear problete = «3) in body-fitted coordinates at the tinie= 0.7. The contour lines are
shown in the(x, y)-plane.

On the other hand, the restriction of the solution to the lipes +x closely match the
polar-coordinate solution only up to the time of boundary interactions. Thereafter, this agt
ment ceases and the boundary conditions fail to be satisfied at the corresponding bour
points because of severe oscillations. Moreover, we found that the instability near th
boundary points increases severely (because of the distortion of the grid) as the comy
tional grid is refined. Thus, axisymmetry, a main criterion for evaluating the effectivene
of our numerical schemes, is not preserved. These effects are striking and are illustrate
Fig. 12 forw, with ¢« = a3, t = 0.7, and forN = M = 50. This figure should be com-
pared with Fig. 11 fot = 0.7. The (correct) approach leading to Fig. 11 gives an accura

0.4 -
03}
02 F
01 F . LTI
i
or e O
-0.1 TR
-0:4 1
0.5
-1
0.5 ) 7 A

FIG.12. Graph ofthe shear strain atthe timeg = 0.7 over the(x, y)-plane for the axisymmetric quasilinear
problem ¢ = «3). This graph is computed in body-fitted coordinates by the faulty alternative formulation wit
N = M = 50. The ineffectiveness of this approach is signaled by the symmetry-destroying oscillations near wi
the diagonals intersect the circular boundary. The level curves of this graph suggest that axisymmetry is alst
near the center. This figure should be compared with Fig. 11.
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description of the boundary behavior and behavior at the origin, preserves the axisymm
and exhibits improved accuracy as the grid is refined.

7. COMMENTS

We have formulated a second-order Godunov method that robustly handles shocks, fo
ing effects, and nonconvex constitutive relations for the nonlinear wave equation goverr
antiplane motions of incompressible nonlinearly elastic cylinders. Since our class of pr
lems is restricted, we were able to focus our attention on those places where difficul
could be expected, and thus to manage comfortably without using adaptivity such as
developed by [33]. For problems in which there are a wider variety of waves prese
it would probably be necessary to replace Davis’s Riemann solver with something m
sophisticated.

We tempted fate by our choice of body-fitted coordinates in Section 5, which produc
serious distortions at the intersections of fiBes with the bounding circle. Nevertheless,
the resulting computations remain accurate provided that we avoid the dangers desct
in Section 5.6. (To avoid testing body-fitted coordinates under the extreme conditions
imposed on them, we could have broken up the unit disk into five regions, bounded b
square centered at the origin, by rays going outward from the corners of the square,
by the outer circle, and then mapping each of these regularly onto a square, at the co
matching the computations across common boundaries.)

We carried out other computations for CFL numbers 0.5 and 0.9. The differences in
computations from those shown here for CFL number 0.7 were slight.

The variables in (5.2) should satisfy the compatibility conditign= z,. To check
whether this condition was conserved, we computgd- z, for our solution with body-
fitted coordinates on the time interval [0, 1] for different CFL numbers. Initially the max
mum of juy — z,| was high (approximately 5, because of the initial discontinuity) and the
diminished until the wave hit the boundary. Here the maximum (approximately 1) w
attained near the singularities of the body-fitted coordinates. Although our computatio
scheme made no provision to consewe— zy, the good agreement between the one-
dimensional (axisymmetric) solutions and the two-dimensional solutions indirectly sugg
that.

Our methods were inspired in part by those used in gas dynamics. Despite the \
different character of the governing equations (ours have a more complicated depend:
on the strains and are genuinely not genuinely nonlinear), we succeeded in obtaining
accurate results.

Our results do not indicate any singular behavior associated with focusing at the «
gin, and do not indicate any instability for soft materials (having sublinear constituti
functions). As we mentioned in the Introduction (Section 1), such effects are exhibit
for many other problems of elasticity. We attribute their absence here more to the incc
pressibility than to the limited repertoire of shearing deformations available in antipla
motions.

We might expect the nonconvexity of the constitutive equations for shear to lead to p
sible computational complications as they are known to lead to complications in the
(cf. [11]). We have found none for the data we used. We have made no special pre
sions for treating them, the study of which would not promote our main aim of examini
the possibility of singularities as a result of focusing and nonlinear material response.
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simply allowed the dissipation inherent in our Godunov scheme to serve as an admiss
ity criterion. We would expect a far richer repertoire of response when the constraint
antiplanarity is lifted. In particular, the not completely understood phenomenon of ov
compressive shocks (with their delicate stability with respect to viscosity) [11, 14] occt
in bidirectional shearing of incompressible elastic media [3, Sec. 16.5].
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